If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+45.9x=0
a = 4.9; b = 45.9; c = 0;
Δ = b2-4ac
Δ = 45.92-4·4.9·0
Δ = 2106.81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45.9)-\sqrt{2106.81}}{2*4.9}=\frac{-45.9-\sqrt{2106.81}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45.9)+\sqrt{2106.81}}{2*4.9}=\frac{-45.9+\sqrt{2106.81}}{9.8} $
| x-2+2x+x+x+1+x-1=19 | | 18x+10x-10x=120+25+10-6 | | 4x×4=64 | | 998=6d−-194 | | 19p=46-5 | | 18x+10x-10x=120+25×10-6 | | -86+9x=58+13x | | 6y=5(y+65) | | k+35=42=60 | | y/17=13 | | y/12=5/10 | | 6-8y=-18 | | 20q+15=5 | | -14-18x=-2(-3x+7) | | 14u+18=18 | | r(r−10)=0 | | -6x-73=1x+143 | | j+30=30 | | 8x+22=3(x-1) | | X+1/2x+2/3x=13 | | 9(x-1)=7x-25 | | (3x+5+x)=9 | | 7x+12=3/25 | | 3x+1=x=3 | | 10x²+9=499 | | 36+k=43 | | 18x^2-9x-9=0 | | v+16=22 | | 36=3k-15 | | 4+7(1+3n)=-23 | | 1=g/4-4 | | k+30/10=4 |